Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The dysbiosis of intestinal microbiota and their metabolites is linked to the occurrence and development of metabolic syndrome. Although fructose has been proven to be associated with worsened mucus in the colon, its mechanism remains unclear. In this study, we evaluated the relatively low intake of sucrose and fructose in the experimental colitis of Sprague Dawley rats by investigating the microbiome and metabolome. Results showed that sucrose and fructose significantly reduced body weight, colon length and increased inflammation infiltration in colon. Sucrose and fructose worsen colon functions by inhibiting the expression of tight junction (TJ) protein ZO-1 and increasing the level of lipopolysaccharide neoandrographolide (LPS) in plasma, while fructose was more significant. Furthermore, sucrose and fructose significantly changed the composition of gut microbiota characterized by decreasing Adlercreutzia, Leuconostoc, Lactococcus and Oscillospira and increasing Allobaculum and Holdemania along with reducing histidine, phenylalanine, arginine, glycine, aspartic acid, serine, methionine valine, alanine, lysine, isoleucine, leucine, threonine, tryptophan, tyrosine, proline, citrulline, 4-hydroxyproline and gamma amino butyric acid (GABA). Metabolome results showed that fructose may aggravate experimental colitis symptoms by inducing amino metabolism dysbiosis in the colon. These findings suggested that fructose worsened colitis by manipulating the crosstalk between gut microbiota and their metabolites.

Details

Title
Fructose Stimulated Colonic Arginine and Proline Metabolism Dysbiosis, Altered Microbiota and Aggravated Intestinal Barrier Dysfunction in DSS-Induced Colitis Rats
Author
Song, Ge 1 ; Gan, Qianyun 2 ; Qi, Wentao 3 ; Wang, Yong 3   VIAFID ORCID Logo  ; Xu, Meihong 4   VIAFID ORCID Logo  ; Li, Yong 4   VIAFID ORCID Logo 

 Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; Academy of National Food and Strategic Reserves Administration, Beijing 100037, China 
 Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 
 Academy of National Food and Strategic Reserves Administration, Beijing 100037, China 
 Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China 
First page
782
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20726643
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774951177
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.