Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cultural traces under forests are one of the main problems affecting the identification of archaeological sites in densely forested areas, so it is full of challenges to discover ancient tombs buried under dense vegetation. The covered ancient tombs can be identified by studying the time-series features of the vegetation covering the ancient tombs on the multi-time series remote sensing images because the ancient tombs buried deep underground have long-term underground space structures, which affect the intrinsic properties of the surface soil so that the growth status of the covering vegetation is different from that of the vegetation in the area without ancient tombs. We first use the highly detailed DSM data to select the ancient tombs that cannot be visually distinguished on the optical images. Then, we explored and constructed the temporal features of the ancient tombs under the forest and the non-ancient tombs in the images, such as the radar timing-series features of Sentinel 1 and the multi-spectral and vegetation index timing-series features of Sentinel 2. Finally, based on these features and machine learning, we designed an automatic identification algorithm for ancient tombs under the forest. The method has been validated in Baling Mountain in Jingzhou, China. It is very feasible to automatically identify ancient tombs covered by surface vegetation by using the timing-series features of remote sensing images. Additionally, the identification of large ancient tombs or concentrated ancient tombs is more accurate, and the accuracy is improved after adding radar features. The paper concludes with a discussion of the current limitations and future directions of the method.

Details

Title
Discovering the Ancient Tomb under the Forest Using Machine Learning with Timing-Series Features of Sentinel Images: Taking Baling Mountain in Jingzhou as an Example
Author
Liu, Yichuan 1   VIAFID ORCID Logo  ; Hu, Qingwu 1   VIAFID ORCID Logo  ; Wang, Shaohua 1 ; Zou, Fengli 2 ; Ai, Mingyao 1 ; Zhao, Pengcheng 1   VIAFID ORCID Logo 

 School of Remote Sensing and Information Engineering, Wuhan University, No. 129, Luoyu Road, Wuhan 430079, China 
 School of Geography and Tourism, Qufu Normal University, No. 80, Yantai North Road, Rizhao 276826, China 
First page
554
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774963809
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.