Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Permafrost degradation can significantly affect vegetation, infrastructure, and sustainable development on the Qinghai-Tibet Plateau (QTP). The permafrost on the QTP faces a risk of widespread degradation due to climate change and ecosystem disturbances; thus, monitoring its changes is critical. In this study, we conducted a permafrost surface deformation prediction over the Tuotuo River tributary watershed in the southwestern part of the QTP using the Long Short-Term Memory model (LSTM). The LSTM model was applied to the deformation information derived from a time series of Multi-Temporal Interferometry Synthetic Aperture Radar (MT-InSAR). First, we designed a quadtree segmentation-based Small BAseline Subset (SBAS) to monitor the seasonal permafrost deformation from March 2017 to April 2022. Then, the types of frozen soil were classified using the spatio-temporal deformation information and the temperature at the top of the permafrost. Finally, the time-series deformation trends of different types of permafrost were predicted using the LSTM model. The results showed that the deformation rates in the Tuotuo River Basin ranged between −80 to 60 mm/yr. Permafrost, seasonally frozen ground, and potentially degraded permafrost covered 7572.23, 900.87, and 921.70 km2, respectively. The LSTM model achieved high precision for frozen soil deformation prediction at the point scale, with a root mean square error of 4.457 mm and mean absolute error of 3.421 mm. The results demonstrated that deformation monitoring and prediction using MT-InSAR technology integrated with the LSTM model can be used to accurately identify types of permafrost over a large region and quantitatively evaluate its degradation trends.

Details

Title
Evaluating Permafrost Degradation in the Tuotuo River Basin by MT-InSAR and LSTM Methods
Author
Zhou, Ping 1   VIAFID ORCID Logo  ; Liu, Weichao 1 ; Zhang, Xuefei 2 ; Wang, Jing 3 

 School of Geosciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China 
 Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China 
 Zhejiang Laboratory, Research Institute of Intelligent Computing, Hangzhou 311121, China 
First page
1215
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774970274
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.