Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Industrial Control Systems (ICSs) were initially designed to be operated in an isolated network. However, recently, ICSs have been increasingly connected to the Internet to expand their capability, such as remote management. This interconnectivity of ICSs exposes them to cyber-attacks. At the same time, cyber-attacks in ICS networks are different compared to traditional Information Technology (IT) networks. Cyber attacks on ICSs usually involve a sequence of actions and a multitude of devices. However, current anomaly detection systems only focus on local analysis, which misses the correlation between devices and the progress of attacks over time. As a consequence, they lack an effective way to detect attacks at an entire network scale and predict possible future actions of an attack, which is of significant interest to security analysts to identify the weaknesses of their network and prevent similar attacks in the future. To address these two key issues, this paper presents a system-wide anomaly detection solution using recurrent neural networks combined with correlation analysis techniques. The proposed solution has a two-layer analysis. The first layer targets attack detection, and the second layer analyses the detected attack to predict the next possible attack actions. The main contribution of this paper is the proof of the concept implementation using two real-world ICS datasets, SWaT and Power System Attack. Moreover, we show that the proposed solution effectively detects anomalies and attacks on the scale of the entire ICS network.

Details

Title
Correlation-Based Anomaly Detection in Industrial Control Systems
Author
Jadidi, Zahra 1   VIAFID ORCID Logo  ; Pal, Shantanu 2   VIAFID ORCID Logo  ; Hussain, Mukhtar 3   VIAFID ORCID Logo  ; Kien Nguyen Thanh 4   VIAFID ORCID Logo 

 School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; School of Information and Communication Technology, Griffith University, Gold Coast, QLD 4222, Australia 
 School of Information Technology, Deakin University, Melbourne, VIC 3125, Australia 
 School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia 
 School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD 4000, Australia 
First page
1561
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774973757
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.