Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, the paper cups were used as the research objects, and the machine vision detection technology was combined with different image processing techniques to investigate a non-contact optical automatic detection system to identify the defects of the manufactured paper cups. The combined ring light was used as the light source, an infrared (IR) LED matrix panel was used to provide the IR light to constantly highlight the outer edges of the detected objects, and a multi-grid pixel array was used as the image sensor. The image processing techniques, including the Gaussian filter, Sobel operator, Binarization process, and connected component, were used to enhance the inspection and recognition of the defects existing in the produced paper cups. There were three different detection processes for paper cups, which were divided into internal, external, and bottom image acquisition processes. The present study demonstrated that all the detection processes could clearly detect the surface defect features of the manufactured paper cups, such as dirt, burrs, holes, and uneven thickness. Our study also revealed that the average time for the investigated Automatic Optical Detection to detect the defects on the paper cups was only 0.3 s.

Details

Title
Research and Evaluation on an Optical Automatic Detection System for the Defects of the Manufactured Paper Cups
Author
Wang, Ping 1 ; Yang-Han, Lee 2 ; Hsien-Wei Tseng 1 ; Cheng-Fu, Yang 3 

 College of Artificial Intelligence, Yango University, Fuzhou 350015, China 
 Department of Electrical and Computer Engineering, Tamkang University, New Taipei City 251, Taiwan 
 Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan; Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413, Taiwan 
First page
1452
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774977911
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.