Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The existing research on emotion recognition commonly uses mel spectrogram (MelSpec) and Geneva minimalistic acoustic parameter set (GeMAPS) as acoustic parameters to learn the audio features. MelSpec can represent the time-series variations of each frequency but cannot manage multiple types of audio features. On the other hand, GeMAPS can handle multiple audio features but fails to provide information on their time-series variations. Thus, this study proposes a speech emotion recognition model based on a multi-input deep neural network that simultaneously learns these two audio features. The proposed model comprises three parts, specifically, for learning MelSpec in image format, learning GeMAPS in vector format, and integrating them to predict the emotion. Additionally, a focal loss function is introduced to address the imbalanced data problem among the emotion classes. The results of the recognition experiments demonstrate weighted and unweighted accuracies of 0.6657 and 0.6149, respectively, which are higher than or comparable to those of the existing state-of-the-art methods. Overall, the proposed model significantly improves the recognition accuracy of the emotion “happiness”, which has been difficult to identify in previous studies owing to limited data. Therefore, the proposed model can effectively recognize emotions from speech and can be applied for practical purposes with future development.

Details

Title
Multi-Input Speech Emotion Recognition Model Using Mel Spectrogram and GeMAPS
Author
Toyoshima, Itsuki 1 ; Okada, Yoshifumi 2 ; Ishimaru, Momoko 1 ; Uchiyama, Ryunosuke 1 ; Tada, Mayu 1 

 Division of Information and Electronic Engineering, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran 050-8585, Hokkaido, Japan 
 College of Information and Systems, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran 050-8585, Hokkaido, Japan 
First page
1743
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774977954
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.