Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In Industry 4.0 scenarios, wearable sensing allows the development of monitoring solutions for workers’ risk prevention. Current approaches aim to identify the presence of a risky event, such as falls, when it has already occurred. However, there is a need to develop methods capable of identifying the presence of a risk condition in order to prevent the occurrence of the damage itself. The measurement of vital and non-vital physiological parameters enables the worker’s complex state estimation to identify risk conditions preventing falls, slips and fainting, as a result of physical overexertion and heat stress exposure. This paper aims at investigating classification approaches to identify risk conditions with respect to normal physical activity by exploiting physiological measurements in different conditions of physical exertion and heat stress. Moreover, the role played in the risk identification by specific sensors and features was investigated. The obtained results evidenced that k-Nearest Neighbors is the best performing algorithm in all the experimental conditions exploiting only information coming from cardiorespiratory monitoring (mean accuracy 88.7±7.3% for the model trained with max(HR), std(RR) and std(HR)).

Details

Title
A Classification Method for Workers’ Physical Risk
Author
Tamantini, Christian  VIAFID ORCID Logo  ; Rondoni, Cristiana; Cordella, Francesca; Guglielmelli, Eugenio; Zollo, Loredana
First page
1575
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774978314
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.