Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Spectral congestion and modern consumer applications motivate radio technologies that efficiently cooperate with nearby users and provide several services simultaneously. We designed and implemented a joint positioning-communications system that simultaneously enables network communications, timing synchronization, and localization to a variety of airborne and ground-based platforms. This Communications and High-Precision Positioning (CHP2) system simultaneously performs communications and precise ranging (<10 cm) with a narrow band waveform (10 MHz) at a carrier frequency of 915 MHz (US ISM) or 783 MHz (EU Licensed). The ranging capability may be extended to estimate the relative position and orientation by leveraging the spatial diversity of the multiple-input, multiple-output (MIMO) platforms. CHP2 also digitally synchronizes distributed platforms with sub-nanosecond precision without support from external systems (GNSS, GPS, etc.). This performance is enabled by leveraging precise time-of-arrival (ToA) estimation techniques, a network synchronization algorithm, and the intrinsic cooperation in the joint processing chain that executes these tasks simultaneously. In this manuscript, we describe the CHP2 system architecture, hardware implementation, and in-lab and over-the-air experimental validation.

Details

Title
Communications and High-Precision Positioning (CHP2): Hardware Architecture, Implementation, and Validation
Author
Yu, Hanguang; Herschfelt, Andrew; Wu, Shunyao  VIAFID ORCID Logo  ; Srinivas, Sharanya  VIAFID ORCID Logo  ; Yang, Li; Sciammetta, Nunzio; Smith, Leslie; Rueger, Klaus; Lee, Hyunseok; Chakrabarti, Chaitali; Bliss, Daniel W
First page
1343
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774978836
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.