Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Crop yield forecasting before harvesting is critical for the creation, implementation, and optimization of policies related to food safety as well as for agro-product storage and marketing. Crop growth and development are influenced by the weather. Therefore, models using weather variables can provide reliable predictions of crop yields. It can be tough to select the best crop production forecasting model. Therefore, in this study, five alternative models, viz., stepwise multiple linear regression (SMLR), an artificial neural network (ANN), the least absolute shrinkage and selection operator (LASSO), an elastic net (ELNET), and ridge regression, were compared in order to discover the best model for rice yield prediction. The outputs from individual models were used to build ensemble models using the generalized linear model (GLM), random forest (RF), cubist and ELNET methods. For the previous 21 years, historical rice yield statistics and meteorological data were collected for three districts under three separate agro-climatic zones of Chhattisgarh, viz., Raipur in the Chhattisgarh plains, Surguja in the northern hills, and Bastar in the southern plateau. The models were calibrated using 80% of these datasets, and the remaining 20% was used for the validation of models. The present study concluded that for rice crop yield forecasting, the performance of the ANN was good for the Raipur (Rcal2 = 1, Rval2= 1 and RMSEcal = 0.002, RMSEval = 0.003) and Surguja (Rcal2 = 1, Rval2= 0.99 and RMSEcal = 0.004, RMSEval = 0.214) districts as compared to the other models, whereas for Bastar, ELNET (Rcal2 = 90, Rval2= 0.48) and LASSO (Rcal2 = 93, Rval2= 0.568) performed better. The performance of the ensemble model was better compared to the individual models. For Raipur and Surguja, the performance of all the ensemble methods was comparable, whereas for Bastar, random forest (RF) performed better, with R2 = 0.85 and 0.81 for calibration and validation, respectively, as compared to the GLM, cubist, and ELNET approach.

Details

Title
Comparative Analysis of Statistical and Machine Learning Techniques for Rice Yield Forecasting for Chhattisgarh, India
Author
Satpathi, Anurag 1   VIAFID ORCID Logo  ; Setiya, Parul 1 ; Das, Bappa 2   VIAFID ORCID Logo  ; Ajeet Singh Nain 1   VIAFID ORCID Logo  ; Jha, Prakash Kumar 3   VIAFID ORCID Logo  ; Singh, Surendra 4   VIAFID ORCID Logo  ; Singh, Shikha 5 

 Department of Agrometeorology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar 263153, India 
 ICAR Central Coastal Agricultural Research Institute, Old Goa 403402, India 
 Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS 66506, USA 
 Columbia Basin Agricultural Research Center, Oregon State University, Adams, OR 97810, USA 
 Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838, USA 
First page
2786
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2775010174
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.