Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Workers on construction sites face numerous health and safety risks. Authorities have made numerous attempts to enhance safety management; yet incidents continue to occur, impacting both worker health and the project’s forward momentum. To that end, developing strategies to improve construction site safety management is crucial. The goal of this project is to employ computer vision and deep learning methods to create a model that can recognize construction workers, their PPE and the surrounding heavy equipment from CCTV footage. Then, the hazards can be discovered and identified based on an analysis of the imagery data and other criteria including weather conditions, and the on-site safety officer can be contacted. Our own dataset was used to train the You Only Look Once model, version 5 (YOLO-v5), which was put to use as an object detection model. The detection model’s performance in tests showed promise for fast and accurate object recognition in the field.

Details

Title
Construction Site Hazards Identification Using Deep Learning and Computer Vision
Author
Alateeq, Muneerah M 1 ; Fathimathul Rajeena P P 1   VIAFID ORCID Logo  ; Ali, Mona A S 2   VIAFID ORCID Logo 

 Computer Science Department, College of Computer Science and Information Technology, King Faisal University, Al Ahsa 36291, Saudi Arabia 
 Computer Science Department, College of Computer Science and Information Technology, King Faisal University, Al Ahsa 36291, Saudi Arabia; Computer Science Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha 12311, Egypt 
First page
2358
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2775018717
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.