Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Herein, we report the performance of some low-cost biosorbents developed by environment-friendly modification of walnut shells. Two types of biosorbents were prepared by ecological modification of walnut shell surfaces: (1) biosorbents obtained by hot water treatment (WSH2O) and (2) biosorbents produced by mercerization (WSNaOH). Different techniques were used to evaluate the morphological, elemental, and structural modification of the biosorbents, by comparison with raw materials. These characterization techniques involved scanning electron microscopy (SEM) coupled with energy-dispersive X-ray analysis, and Fourier-transform infrared spectroscopy (FTIR). The biosorbents were employed for the removal of methylene blue (MB) and crystal violet (CV) cationic dyes (as model organic pollutants) from aqueous solutions. The kinetic adsorption data mainly followed the pseudo-first-order model. The maximum adsorption capacities of the produced biosorbents ranged from 102 to 110 mg/g and were observed at 330 K. Equilibrium data for adsorption were fitted to Langmuir and Freundlich isotherm models. The calculated values of thermodynamic parameters suggested that the investigated adsorption processes were exergonic (ΔG < 0) and exothermic (ΔH < 0). In addition, a possible valorization of the cost-effective and eco-friendly spent biosorbents was tested by performing secondary adsorption of the anionic dyes.

Details

Title
An Eco-Friendly Modification of a Walnut Shell Biosorbent for Increased Efficiency in Wastewater Treatment
Author
Andra-Cristina Enache 1   VIAFID ORCID Logo  ; Petrisor Samoila 1   VIAFID ORCID Logo  ; Cojocaru, Corneliu 1   VIAFID ORCID Logo  ; Apolzan, Roxana 2 ; Predeanu, Georgeta 3   VIAFID ORCID Logo  ; Harabagiu, Valeria 1   VIAFID ORCID Logo 

 Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania 
 SC Cosfel Actual SRL, 95-97 Grivitei Street, 010705 Bucharest, Romania 
 Research Center for Environmental Protection and Eco-Friendly Technologies (CPMTE), University Politehnica of Bucharest, 1 Polizu Street, 011061 Bucharest, Romania 
First page
2704
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2775038041
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.