It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
High-speed and high-resolution imaging of surface profiles is critical for the investigation of various structures and mechanical dynamics of micro- and nano-scale devices. In particular, recent emergence of various nonlinear, transient and complex mechanical dynamics, such as anharmonic vibrations in mechanical resonators, has necessitated real-time surface deformation imaging with higher axial and lateral resolutions, speed, and dynamic range. However, real-time capturing of fast and complex mechanical dynamics has been challenging, and direct time-domain imaging of displacements and mechanical motions has been a missing element in studying full-field structural and dynamic behaviours. Here, by exploiting the electro-optic sampling with a frequency comb, we demonstrate a line-scan time-of-flight (TOF) camera that can simultaneously measure the TOF changes of more than 1000 spatial coordinates with hundreds megapixels/s pixel-rate and sub-nanometre axial resolution over several millimetres field-of-view. This unique combination of performances enables fast and precise imaging of both complex structures and dynamics in three-dimensional devices and mechanical resonators.
Ultrafast multidimensional imaging is made possible by the electro-optic sampling of arrival timings of multiple space-to-wavelength encoded light pulses.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea (GRID:grid.37172.30) (ISNI:0000 0001 2292 0500)
2 Korea Research Institute of Standards and Science (KRISS), Daejeon, Korea (GRID:grid.410883.6) (ISNI:0000 0001 2301 0664)