It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Aim: Comparison of accuracy rate in prediction of cardiovascular disease using Naive Bayes with Logistic Regression. Materials and Methods: The Naive Bayes (N=10) and Logistic Regression Algorithm (N=10) these two algorithms are calculated by using 2 Groups and taken 20 samples for both algorithm and accuracy in this work. The sample size is determined using the G power Calculator and it's found to be 10. Results: Based on the Results Accuracy obtained in terms of accuracy is identified by Naive Bayes (87.02%) over the Logistic Regression algorithm (92.18%). Statistical significance difference between novel Naive Bayes algorithm and Logistic Regression Algorithm was found to be p=0.001 (2 tailed) (p<0.05). Conclusion: Prediction of cardiovascular disease using Logistic Regression is significantly better than the Naive Bayes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer