Abstract

Background

Circular RNAs (circRNAs) are a class of covalenty closed non-coding RNAs that have garnered increased attention from the research community due to their stability, tissue-specific expression and role as transcriptional modulators via sequestration of miRNAs. Currently, multiple quantification tools capable of detecting circRNAs exist, yet none delineate circRNA–miRNA interactions, and only one employs differential expression analysis. Efforts have been made to bridge this gap by way of circRNA workflows, however these workflows are limited by both the types of analyses available and computational skills required to run them.

Results

We present nf-core/circrna, a multi-functional, automated high-throughput pipeline implemented in nextflow that allows users to characterise the role of circRNAs in RNA Sequencing datasets via three analysis modules: (1) circRNA quantification, robust filtering and annotation (2) miRNA target prediction of the mature spliced sequence and (3) differential expression analysis. nf-core/circrna has been developed within the nf-core framework, ensuring robust portability across computing environments via containerisation, parallel deployment on cluster/cloud-based infrastructures, comprehensive documentation and maintenance support.

Conclusion

nf-core/circrna reduces the barrier to entry for researchers by providing an easy-to-use, platform-independent and scalable workflow for circRNA analyses. Source code, documentation and installation instructions are freely available at https://nf-co.re/circrna and https://github.com/nf-core/circrna.

Details

Title
nf-core/circrna: a portable workflow for the quantification, miRNA target prediction and differential expression analysis of circular RNAs
Author
Digby, Barry; Finn, Stephen P; Pilib Ó Broin
Pages
1-15
Section
Software
Publication year
2023
Publication date
2023
Publisher
BioMed Central
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2777761802
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.