It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Optimal sizing for phakic intraocular lens (EVO-ICL with KS-AquaPort) implantation plays an important role in preventing postoperative complications. We aimed to formulate optimal lens sizing using ocular biometric parameters measured with a Heidelberg anterior segment optical coherence tomography (AS-OCT) device.
Methods
We retrospectively analyzed 892 eyes of 471 healthy subjects treated with an intraocular collamer lens (ICL) and assigned them to either the development (80%) or validation (20%) set. We built vault prediction models using the development set via classic linear regression methods as well as partial least squares and least absolute shrinkage and selection operator (LASSO) regression techniques. We evaluated prediction abilities based on the Bayesian information criterion (BIC) to select the best prediction model. The performance was measured using Pearson’s correlation coefficient and the mean squared error (MAE) between the achieved and predicted results.
Results
Measurements of aqueous depth (AQD), anterior chamber volume, anterior chamber angle (ACA) distance, spur-to-spur distance, crystalline lens thickness (LT), and white-to-white distance from ANTERION were highly associated with the ICL vault. The LASSO model using the AQD, ACA distance, and LT showed the best BIC results for postoperative ICL vault prediction. In the validation dataset, the LASSO model showed the strongest correlation (r = 0.582, P < 0.001) and the lowest MAE (104.7 μm).
Conclusion
This is the first study to develop a postoperative ICL vault prediction and lens-sizing model based on the ANTERION. As the measurements from ANTERION and other AS-OCT devices are not interchangeable, ANTERION may be used for optimal ICL sizing using our formula. Because our model was developed based on the East Asian population, further studies are needed to explore the role of this prediction model in different populations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer