It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Although treatment options and algorithms for rheumatoid arthritis (RA) have improved remarkably in recent decades, there continues to be no definitive cure or pharmacologic intervention with reliable long-term efficacy. For this reason, the combination of medications and healthy lifestyle modifications are essential for controlling joint disease, and extra-articular manifestations of RA, such as interstitial lung disease (ILD) and other lung pathologies, which greatly impact morbidity and mortality. Generally, exercise has been deemed beneficial in RA patients, and both patients and clinicians are motivated to incorporate effective non-pharmacologic interventions. However, there are limited evidence-based and specific exercise regimens available to support engagement in such activities for RA patients. Here, we provided the continuous opportunity for exercise to mice and implemented automated recording and quantification of wheel running behavior. This allowed us to describe the associated effects on the progression of inflammatory-erosive arthritis and ILD in the tumor necrosis factor transgenic (TNF-Tg) mouse model of RA.
Methods
Wild-type (WT; males, n=9; females, n=9) and TNF-Tg (males, n=12; females, n=14) mice were singly housed with free access to a running wheel starting at 2 months until 5 to 5.5 months of age. Measures of running included distance, rate, length, and number of run bouts, which were derived from continuously recorded data streams collected automatically and in real-time. In vivo lung, ankle, and knee micro-computed tomography (micro-CT), along with terminal micro-CT and histology were performed to examine the association of running behaviors and disease progression relative to sedentary controls.
Results
TNF-Tg males and females exhibited significantly reduced running distance, rate, length, and number of run bouts compared to WT counterparts by 5 months of age (p<0.0001). Compared to sedentary controls, running males and females showed increased aerated lung volumes (p<0.05) that were positively correlated with running distance and rate in female mice (WT: Distance, ρ=0.705/rate, ρ=0.693 (p<0.01); TNF-Tg: ρ=0.380 (p=0.06)/ρ=0.403 (p<0.05)). Talus bone volumes were significantly reduced in running versus sedentary males and negatively correlated with running distance and rate in TNF-Tg mice (male: ρ=−903/ρ=−0.865; female: ρ=−0.614/ρ=−0.594 (p<0.001)). Histopathology validated the lung and ankle micro-CT findings.
Conclusions
Implementation of automated wheel running behavior metrics allows for evaluation of longitudinal activity modifications hands-off and in real-time to relate with biomarkers of disease severity. Through such analysis, we determined that wheel running activity increases aerated lung volumes, but exacerbates inflammatory-erosive arthritis in TNF-Tg mice. To the end of a clinically relevant model, additional functional assessment of these outcomes and studies of pain behavior are warranted.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer