It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Deep learning, aided by the availability of big data sets, has led to substantial advances across many disciplines. However, many scientific problems of practical interest lack sufficiently large datasets amenable to deep learning. Prediction of antibody viscosity is one such problem where deep learning methods have not yet been explored due to the relative scarcity of relevant training data. In this work, we overcome this limitation using a biophysically meaningful representation that enables us to develop generalizable models even under limited training data. We present, PfAbNet-viscosity, a 3D convolutional neural network architecture, to predict high-concentration viscosity of therapeutic antibodies. We show that with the electrostatic potential surface of the antibody variable region as the only input to the network, the models trained on as few as couple dozen datapoints can generalize with high accuracy. Our feature attribution analysis shows that PfAbNet-viscosity has learned key biophysical drivers of viscosity. The applicability of our approach to other biological systems is discussed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Machine Learning and Computational Sciences, Pfizer Worldwide Research Development and Medical, Cambridge, USA
2 Biomedicine Design, Pfizer Worldwide Research Development and Medical, Cambridge, USA