It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Un marco teórico potente resulta clave para especificar el modelo mixto que explica mejor la variabilidad de datos longitudinales. A falta de teoría, la mayoría de las investigaciones realizadas hasta la fecha, se ha centrado en ajustar la matriz de dispersión usando criterios de selección de modelos para elegir entre estructuras de covarianza no anidadas. En este trabajo, comparamos el desempeño del estadístico razón de verosimilitud (LRT) condicional y de varias versiones de los criterios de información para seleccionar estructuras de medias y/o de covarianzas anidadas, asumiendo conocido el verdadero proceso generador de datos. Los resultados numéricos indican que los criterios de información eficientes funcionaban mejor que sus homólogos consistentes cuando las matrices de dispersión usadas en la generación eran complejas y peor cuando eran simples. Globalmente, el desempeño del LRT condicional basado en el estimador de máxima verosimilitud completa (FML) era superior al resto de los criterios examinados. Sin embargo, el desempeño era inferior cuando se basaba en el estimador máxima verosimilitud restringida (REML). También encontramos que la estrategia sugerida en la literatura estadística de usar el estimador REML para seleccionar la estructura de covarianza y el estimador FML para seleccionar la estructura de medias debería ser evitada.
Nested model selection for longitudinal data using information criteria and the conditional adjustment strategy. Knowledge of the subject matter plays a vital role when attempting to choose the best possible linear mixed model to analyze longitudinal data. To date, in the absence of strong theory, much of the work has focused on modeling the covariance matrix by comparing non-nested models using selection criteria. In this paper, we compare the performance of conditional likelihood ratio test (LRT) and several versions of information criteria for selecting nested mean structures and/or nested covariance structures, assuming that the true data-generating processes are known. Simulation results indicate that the efficient criteria performed better than their consistent counterparts when covariance structures used in the data generation were complex, and worse when structures were simple. The conditional LRT under full maximum likelihood (FML) estimation was better overall than the other criteria in terms of selection performance. However, under restricted maximum likelihood (REML), estimation was inferior. We also find that the strategy suggested in the statistical literature of using REML for covariance structure selection, and FML for mean structure selection may be misleading.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer