It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The presence of infectious viral particles in bioaerosols generated during laparoscopic surgery places surgical staff at significant risk of infection and represents a major cause of nosocomial infection. These factors contributed to the postponement and cancellation of countless surgical procedures during the early stages of the ongoing COVID-19 pandemic, causing backlogs, increased waiting times for surgical procedures and excess deaths indirectly related to the pandemic. The development and implementation of devices that effectively inactivate viral particles from bioaerosols would be beneficial in limiting or preventing the spread of infections from such bioaerosols. Here, we sought to evaluate whether electrostatic precipitation (EP) is a viable means to capture and inactivate both non-enveloped (Adenovirus) and enveloped (SARS-CoV-2 Pseudotyped Lentivirus) viral particles present in bioaerosols. We developed a closed-system model to mimic the release of bioaerosols during laparoscopic surgery. Known concentrations of each virus were aerosolised into the model system, exposed to EP using a commercially available system (UltravisionTM, Alesi Surgical Limited, UK) and collected in a BioSampler for analysis. Using qPCR to quantify viral genomes and transduction assays to quantify biological activity, we show that both enveloped and non-enveloped viral particles were efficiently captured and inactivated by EP. Both capture and inactivation could be further enhanced when increasing the voltage to 10kV, or when using two UltravisionTM discharge electrodes together at 8kV. This study highlights EP as an efficient means for capturing and inactivating viral particles present in bioaerosols. The use of EP may limit the spread of diseases, reducing nosocomial infections and potentially enable the continuation of surgical procedures during periods of viral pandemics.
Competing Interest Statement
JB is an employee of Alesi Surgical Ltd.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer