It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Pumilio proteins are RNA-binding proteins that control mRNA translation and stability by binding to the 3’ UTR of target mRNAs. Mammals have two canonical Pumilio proteins, PUM1 and PUM2, which are known to act in many biological processes, including embryonic development, neurogenesis, cell cycle regulation and genomic stability. Here, we characterized a new role of both PUM1 and PUM2 in regulating cell morphology, migration, and adhesion in T-REx-293 cells, in addition to previously known defects in growth rate. Gene ontology analysis of differentially expressed genes in PUM double knockout (PDKO) cells for both cellular component and biological process showed enrichment in categories related to adhesion and migration. PDKO cells had a collective cell migration rate significantly lower than that of WT cells and displayed changes in actin morphology. In addition, during growth, PDKO cells aggregated into clusters (clumps) due to an inability to escape cell–cell contacts. Addition of extracellular matrix (Matrigel) alleviated the clumping phenotype. Collagen IV (ColIV), a major component of Matrigel, was shown to be the driving force in allowing PDKO cells to monolayer appropriately, however, ColIV protein levels remained unperturbed in PDKO cells. This study characterizes a novel cellular phenotype associated with cellular morphology, migration, and adhesion which can aid in developing better models for PUM function in both developmental processes and disease.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of California at Riverside, Department of Molecular, Cell and Systems Biology, Riverside, USA (GRID:grid.266097.c) (ISNI:0000 0001 2222 1582)