It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the field of high-end manufacturing, it is valuable to study few-shot health condition estimation. Although transfer learning and other methods have effectively improved the ability of few-shot learning, they still cannot solve the lack of prior knowledge. In this paper, by combining data enhancement, knowledge reasoning, and transfer learning, a generative knowledge-based transfer learning model is proposed to achieve few-shot health condition estimation. First, with the effectiveness of data enhancement on machine learning, a novel batch monotonic generative adversarial network (BM-GAN) is designed for few-shot health condition data generation, which can solve the problem of insufficient data and generate simulated training data. Second, a generative knowledge-based transfer learning model is proposed with the performance advantages of the belief rule base (BRB) method on few-shot learning, which combines expert knowledge and simulated training data to obtain a generalized BRB model and then fine-tunes the generalized model with real data to obtain a dedicated BRB model. Third, through uniform sampling of NASA lithium battery data and simulating few-shot conditions, the generative transfer-belief rule base (GT-BRB) method proposed in this paper is verified to be feasible for few-shot health condition estimation and improves the estimation accuracy of the BRB method by approximately 17.3%.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Aeronautical Engineering College, Air Force Engineering University, Xi’an, China (GRID:grid.440645.7) (ISNI:0000 0004 1800 072X)
2 Air Force Engineering University, ATC and Navigation College, Xi’an, China (GRID:grid.440645.7) (ISNI:0000 0004 1800 072X)