Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We investigate the solutions of a generalized diffusion-like equation by considering a spatial and time fractional derivative and the presence of non-local terms, which can be related to reaction or adsorption–desorption processes. We use the Green function approach to obtain solutions and evaluate the spreading of the system to show a rich class of behaviors. We also connect the results obtained with the anomalous diffusion processes.

Details

Title
A Generalized Diffusion Equation: Solutions and Anomalous Diffusion
Author
Lenzi, Ervin K 1   VIAFID ORCID Logo  ; Aloisi Somer 2   VIAFID ORCID Logo  ; Zola, Rafael S 3   VIAFID ORCID Logo  ; da Silva, Luciano R 4   VIAFID ORCID Logo  ; Lenzi, Marcelo K 5   VIAFID ORCID Logo 

 Departamento de Física, Universidade Estadual de Ponta Grossa, Av. Gen. Carlos Cavalcanti 4748, Ponta Grossa 84030-900, PR, Brazil; National Institute of Science and Technology for Complex Systems, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil 
 Departamento de Física, Universidade Estadual de Ponta Grossa, Av. Gen. Carlos Cavalcanti 4748, Ponta Grossa 84030-900, PR, Brazil 
 Departamento de Física, Universidade Tecnológica Federal do Paraná, R. Marcílio Dias, 635, Apucarana 86812-460, PR, Brazil 
 National Institute of Science and Technology for Complex Systems, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil; Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil 
 Departamento de Engenharia Química, Universidade Federal do Paraná, Curitiba 80060-000, PR, Brazil 
First page
34
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23115521
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779468375
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.