Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An industrial linear stage is a device that is commonly used in robotics. To be precise, an industrial linear stage is an electro-mechanical system that includes a motor, electronics, flexible coupling, gear, ball screw, and precision linear bearing. A tight fit can provide better precision but also generates a difficult-to-model friction that is highly nonlinear and asymmetrical. Herein, this paper proposes an advanced trajectory controller based on a digital twin framework incorporated with artificial intelligence (AI), which can effectively control a precision linear stage. This framework offers several advantages: detection of abnormalities, estimation of performance, and selective control over any situation. The digital twin is developed via Matlab’s Simscape and runs concurrently having a real-time controller.

Details

Title
A Deep Trajectory Controller for a Mechanical Linear Stage Using Digital Twin Concept
Author
Chaiprabha, Kantawatchr; Chancharoen, Ratchatin  VIAFID ORCID Logo 
First page
91
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
20760825
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779490514
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.