Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Electric space propulsion is a technology which is employed on a continuously increasing number of spacecrafts. While the current focus of their application area is on telecommunication satellites and on space exploration missions, several new ideas are now discussed that go even further and apply the thruster plume particle flow for transferring momentum to targets such as space debris objects or even asteroids. In these potential scenarios, the thruster beam impacts on distant objects and subsequently generates changes in their flight path. One aspect which so far has not been systematically investigated is the interaction of the charged particles in the propulsion beam with magnetic fields which are present in space. This interaction may result in a deflection of the particle flow and consequently affect the aiming strategy. In the present article, basic considerations related to the interaction between electric propulsion thruster plumes and magnetic fields are presented. Experiments with respect to these questions were conducted in the high-vacuum plume test facility for electric thrusters (STG-ET) of the German Aerospace Center in Göttingen utilizing a gridded ion thruster, an RIT10/37, and a Helmholtz coil to generate magnetic fields of varying field strength. It was possible to detect a beam deflection on the RIT ion beam caused by a magnetic field with an Earth-like magnetic field strength.

Details

Title
Ground-Based Experiment for Electric Propulsion Thruster Plume—Magnetic Field Interaction
Author
Neumann, Andreas 1   VIAFID ORCID Logo  ; Mühlich, Nina Sarah 2 

 German Aerospace Center, DLR, 37073 Göttingen, Germany 
 ArianeGroup, Orbital Propulsion, 74239 Lampoldshausen, Germany 
First page
117
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779491060
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.