Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of connected and automated vehicles (CAV) technology not only helps to reduce traffic accidents and improve traffic efficiency, but also has significant potential for energy saving and emission reduction. Using the dynamic traffic flow information around the vehicle to optimize the vehicle trajectory is conducive to improving the energy efficiency of the vehicle. Therefore, an energy-efficient driving method for CAVs based on reinforcement learning is proposed in this paper. Firstly, a set of vehicle trajectory prediction models based on long and short-term memory (LSTM) neural networks are developed, which integrate driving intention prediction and lane change time prediction to improve the prediction accuracy of surrounding vehicle trajectories. Secondly, an energy-efficient driving model is built based on Proximity Policy Optimization (PPO) reinforcement learning. The model takes the current states and predicted trajectories of surrounding vehicles as input information, and outputs energy-saving control variables while taking into account various constraints, such as safety, comfort, and travel efficiency. Finally, the method is tested by simulation on the NGSIM dataset, and the results show that the proposed method can save energy consumption by 9–22%.

Details

Title
An Energy-Efficient Driving Method for Connected and Automated Vehicles Based on Reinforcement Learning
Author
Min, Haitao 1 ; Xiong, Xiaoyong 1 ; Yang, Fang 2 ; Sun, Weiyi 1 ; Yu, Yuanbin 1 ; Wang, Pengyu 1 

 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China 
 General Research and Development Institute, China FAW Corporation Limited, Changchun 130013, China 
First page
168
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779516043
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.