Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Unmanned aerial vehicles (UAVs) have been widely used in plant protection, and the mechanism of droplet deposition drift while spraying with the 3WQF120-12 produced by Quanfeng Aviation, a representative model of single-rotor plant protection UAVs in China, still requires more research. This study used a combination of computational fluid dynamics (CFD) and wind tunnel experiments to analyze the droplet deposition drift pattern of the 3WQF120-12 single-rotor plant protection UAV. The CFD modeling of the nozzle was confirmed to be feasible using wind tunnel experiments. Pearson correlation analysis was performed between experimental and simulated values, and multiple correlation coefficients reached above 0.89, which is a robust correlation. In this study, CFD simulations were performed to simulate the drift of UAV spray droplets under the rotor wind field and the combined effect of front and side winds. The deposition of droplets at different heights was simulated. The UAV’s spraying conditions at different flight speeds, side wind magnitudes, and spraying heights were evaluated. According to the CFD simulation results of the 3WQF120-12 plant protection UAV, the recommended flight height is 1–3 m, the recommended flight speed is below 3 m/s, and the recommended ambient wind speed is within 3 m/s. The simulation results were verified by the field test, and the trend of the field experimental data and CFD simulation results are qualitatively consistent to verify the reasonableness and feasibility of the simulation’s data. The simulated results were similar to the curves and spray area of the field test results at operating heights of 1.5 m and 3.5 m.

Details

Title
Numerical Simulation and Analysis of Droplet Drift Motion under Different Wind Speed Environments of Single-Rotor Plant Protection UAVs
Author
Wang, Juan 1 ; Lv, Xiaoyi 1 ; Wang, Bohong 1 ; Lan, Xinguo 1 ; Yan, Yingbin 2 ; Chen, Shengde 3   VIAFID ORCID Logo  ; Lan, Yubin 3 

 The College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China 
 Patent Examination Cooperation Guangdong Center of the Patent Office, CNIPA, Guangzhou 510555, China 
 College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China 
First page
128
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779524385
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.