Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

A process termed epithelial-to-mesenchymal transition can allow cancer cells to acquire or increase stem cell-like characteristics, which include increased potentials for migration and tissue invasion. This study focused on the effects of transforming growth factor-beta or hypoxia, which are both drivers of epithelial-to-mesenchymal transition, on rare, stem cell-like “side population” cells within the well-characterised human breast cancer cell lines MDA-MB-231 (a model for hormone non-responsive breast cancer) and MCF7 (a model for hormone responsive breast cancer). Both cell lines responded similarly to transforming growth factor-β, whereas hypoxia decreased the side-population cells in MDA-MB-231 but increased the cells in MCF7. Further work performed at the single-cell level, showed that hypoxia specifically increased multi-drug resistance of MCF7 side population cells. Taken together, these data suggest that a better understanding of the regulation of epithelial-to-mesenchymal transition is needed and might allow the identification of new therapeutic targets for the treatment of breast cancer.

Abstract

Epithelial-to-mesenchymal transition (EMT) is known to be important in regulating the behaviour of cancer cells enabling them to acquire stem cell characteristics or by enhancing the stem cell characteristics of cancer stem cells, resulting in these cells becoming more migratory and invasive. EMT can be driven by a number of mechanisms, including the TGF-β1 signalling pathway and/or by hypoxia. However, these drivers of EMT differ in their actions in regulating side population (SP) cell behaviour, even within SPs isolated from the same tissue. In this study we examined CoCl2 exposure and TGF-β driven EMT on SP cells of the MDA-MB-231 and MCF7 breast cancer cell lines. Both TGF-β1 and CoCl2 treatment led to the depletion of MDA-MB-231 SP. Whilst TGF-β1 treatment significantly reduced the MCF7 SP cells, CoCl2 exposure led to a significant increase. Single cell analysis revealed that CoCl2 exposure of MCF7 SP leads to increased expression of ABCG2 and HES1, both associated with multi-drug resistance. We also examined the mammosphere forming efficiency in response to CoCl2 exposure in these cell lines, and saw the same effect as seen with the SP cells. We suggest that these contrasting effects are due to ERα expression and the inversely correlated expression of TGFB-RII, which is almost absent in the MCF7 cells. Understanding the EMT-mediated mechanisms of the regulation of SP cells could enable the identification of new therapeutic targets in breast cancer.

Details

Title
Hypoxia-Driven TGFβ Modulation of Side Population Cells in Breast Cancer: The Potential Role of ERα
Author
Mallini, Paraskevi 1 ; Chen, Miaojuan 2 ; Mahkamova, Kamilla 1 ; Lennard, Thomas W J 3 ; Pan, Yue 2 ; Wei, Dan 2 ; Stemke-Hale, Katherine 4 ; Kirby, John A 5   VIAFID ORCID Logo  ; Lash, Gendie E 2   VIAFID ORCID Logo  ; Meeson, Annette 1 

 Biosciences Institute, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK 
 Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Jinsui Road, Tianhe, Guangzhou 510623, China 
 Northern Institute for Cancer Research, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK 
 Department of Systems Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA 
 Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK 
First page
1108
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779524770
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.