Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Surface plasmon resonance microscopy (SPRM) has been widely employed in biological fields because of its high spatial resolution and label-free detection modality. In this study, SPRM based on total internal reflection (TIR) is studied via a home-built SPRM system, and the principle of imaging of a single nanoparticle is analyzed as well. By designing a ring filter and combining it with the deconvolution algorithm in Fourier space, the parabolic tail of the nanoparticle image is removed, in which a spatial resolution of 248 nm is obtained. In addition, we also measured the specific binding between the human IgG antigen and goat anti-human IgG antibody using the TIR-based SPRM. The experimental results have proved that the system can image sparse nanoparticles and monitor biomolecular interactions.

Details

Title
Surface Plasmon Resonance Microscopy Based on Total Internal Reflection
Author
Zhang, Teliang 1 ; Wang, Xueliang 1 ; Zeng, Youjun 2   VIAFID ORCID Logo  ; Huang, Songfeng 1 ; Dai, Xiaoqi 1 ; Kong, Weifu 1 ; Liu, Qian 1 ; Chen, Jiajie 1   VIAFID ORCID Logo  ; Qu, Junle 1   VIAFID ORCID Logo  ; Shao, Yonghong 1 

 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China 
 College of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China 
First page
261
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779531785
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.