Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study reports high-pressure structural and spectroscopic studies on polycrystalline cubic chromium spinel compound LiInCr4O8. According to pressure-dependent X-ray diffraction measurements, three structural phase transitions occur at ∼14 GPa, ∼19 GPa, and ∼36 GPa. The first high-pressure phase is indexed to the low-temperature tetragonal phase of the system which coexists with the ambient phase before transforming to the second high-pressure phase at ∼19 GPa. The pressure-dependent Raman and infrared spectroscopic measurements show a blue-shift of the phonon modes and the crystal field excitations and an increase in the bandgap under compression. During pressure release, the sample reverts to its ambient cubic phase, even after undergoing multiple structural transitions at high pressures. The experimental findings are compared to the results of first principles based structural and phonon calculations.

Details

Title
Pressure-Induced Structural Phase Transitions in the Chromium Spinel LiInCr4O8 with Breathing Pyrochlore Lattice
Author
Varma, Meera 1   VIAFID ORCID Logo  ; Krottenmüller, Markus 1 ; Poswal, H K 2 ; Kuntscher, C A 1   VIAFID ORCID Logo 

 Experimentalphysik II, Augsburg University, 86159 Augsburg, Germany 
 High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India 
First page
170
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779533100
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.