Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chronic stress is a core risk factor for developing a myriad of neurological disorders, including major depression. The chronicity of such stress can lead to adaptive responses or, on the contrary, to psychological maladaptation. The hippocampus is one of the most affected brain regions displaying functional changes in chronic stress. Egr1, a transcription factor involved in synaptic plasticity, is a key molecule regulating hippocampal function, but its role in stress-induced sequels has been poorly addressed. Emotional and cognitive symptoms were induced in mice by using the chronic unpredictable mild stress (CUMS) protocol. We used inducible double-mutant Egr1-CreERT2 x R26RCE mice to map the formation of Egr1-dependent activated cells. Results show that short- (2 days) or long-term (28 days) stress protocols in mice induce activation or deactivation, respectively, of hippocampal CA1 neural ensembles in an Egr1-activity-dependent fashion, together with an associated dendritic spine pathology. In-depth characterization of these neural ensembles revealed a deep-to-superficial switch in terms of Egr1-dependent activation of CA1 pyramidal neurons. To specifically manipulate deep and superficial pyramidal neurons of the hippocampus, we then used Chrna7-Cre (to express Cre in deep neurons) and Calb1-Cre mice (to express Cre in superficial neurons). We found that specific manipulation of superficial but not deep pyramidal neurons of the CA1 resulted in the amelioration of depressive-like behaviors and the restoration of cognitive impairments induced by chronic stress. In summary, Egr1 might be a core molecule driving the activation/deactivation of hippocampal neuronal subpopulations underlying stress-induced alterations involving emotional and cognitive sequels.

Details

Title
Cognitive and Emotional Symptoms Induced by Chronic Stress Are Regulated by EGR1 in a Subpopulation of Hippocampal Pyramidal Neurons
Author
Sancho-Balsells, Anna 1   VIAFID ORCID Logo  ; Borràs-Pernas, Sara 1 ; Brito, Verónica 1 ; Alberch, Jordi 2   VIAFID ORCID Logo  ; Jean-Antoine Girault 3   VIAFID ORCID Logo  ; Giralt, Albert 2 

 Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain 
 Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain 
 Inserm UMR-S 1270, 75005 Paris, France; Science and Engineering Faculty, Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France 
First page
3833
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779537986
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.