Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sphingosine 1-phosphate (S1P) lyase (SPL, Sgpl1) is an ER-associated enzyme that irreversibly degrades the bioactive lipid, S1P, and thereby regulates multiple cellular functions attributed to S1P. Biallelic mutations in the human Sglp1 gene lead to a severe form of a particular steroid-resistant nephrotic syndrome, suggesting that the SPL is critically involved in maintaining the glomerular ultrafiltration barrier, which is mainly built by glomerular podocytes. In this study, we have investigated the molecular effects of SPL knockdown (kd) in human podocytes to better understand the mechanism underlying nephrotic syndrome in patients. A stable SPL-kd cell line of human podocytes was generated by the lentiviral shRNA transduction method and was characterized for reduced SPL mRNA and protein levels and increased S1P levels. This cell line was further studied for changes in those podocyte-specific proteins that are known to regulate the ultrafiltration barrier. We show here that SPL-kd leads to the downregulation of the nephrin protein and mRNA expression, as well as the Wilms tumor suppressor gene 1 (WT1), which is a key transcription factor regulating nephrin expression. Mechanistically, SPL-kd resulted in increased total cellular protein kinase C (PKC) activity, while the stable downregulation of PKCδ revealed increased nephrin expression. Furthermore, the pro-inflammatory cytokine, interleukin 6 (IL-6), also reduced WT1 and nephrin expression. In addition, IL-6 caused increased PKCδ Thr505 phosphorylation, suggesting enzyme activation. Altogether, these data demonstrate that nephrin is a critical factor downregulated by the loss of SPL, which may directly cause podocyte foot process effacement as observed in mice and humans, leading to albuminuria, a hallmark of nephrotic syndrome. Furthermore, our in vitro data suggest that PKCδ could represent a new possible pharmacological target for the treatment of a nephrotic syndrome induced by SPL mutations.

Details

Title
Loss of S1P Lyase Expression in Human Podocytes Causes a Reduction in Nephrin Expression That Involves PKCδ Activation
Author
Imeri, Faik 1 ; Tanturovska, Bisera Stepanovska 1 ; Manaila, Roxana 1 ; Pavenstädt, Hermann 2 ; Pfeilschifter, Josef 3 ; Huwiler, Andrea 1   VIAFID ORCID Logo 

 Institute of Pharmacology, Inselspital, INO-F, University of Bern, CH-3010 Bern, Switzerland 
 Medizinische Klinik D, University Hospital Münster, D-48149 Münster, Germany 
 Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany 
First page
3267
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779540302
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.