Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The use of a suitable modeling technique for the optimized design of a magnetic gear is essential to simulate its electromagnetic behavior and to predict its satisfactory performance. This paper presents the design optimization of an axial flux magnetic gear (AFMG) using a two-dimensional (2D) magnetic equivalent circuit model (MEC) and a Multi-objective Genetic Algorithm (MOGA). The proposed MEC model is configured as a meshed reluctance network (RN) with permanent magnet magnetomotive force sources. The non-linearity in the ferromagnetic materials is accounted for by the MEC. The MEC model based on reluctance networks (RN) is considered to be a good compromise between accuracy and computational effort. This new model will allow a faster analysis and design for the AFMG. A multi-objective optimization is carried out to achieve an optimal volume-focused design of the AFMG for future practical applications. The performance of the optimized model is then verified by establishing flux density comparisons with finite element simulations. This study shows that with the combination of an MEC-RN model and a GA for its optimization, a satisfactory accuracy can be achieved compared to that of the finite element analysis (FEA), but with only a fraction of the computational time.

Details

Title
Design Optimization of an Axial Flux Magnetic Gear by Using Reluctance Network Modeling and Genetic Algorithm
Author
Ruiz-Ponce, Gerardo 1 ; Arjona, Marco A 1 ; Hernandez, Concepcion 1 ; Escarela-Perez, Rafael 2   VIAFID ORCID Logo 

 La Laguna Institute of Technology, TNM, Torreon 27000, Mexico 
 Energy Department, Metropolitan Autonomous University, Azcapotzalco, Ciudad de Mexico 02128, Mexico 
First page
1852
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779543884
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.