Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Location-based social networks (LBSN) allow users to socialize with friends by sharing their daily life experiences online. In particular, a large amount of check-ins data generated by LBSNs capture the visit locations of users and open a new line of research of spatio-temporal big data, i.e., the next point-of-interest (POI) recommendation. At present, while some advanced methods have been proposed for POI recommendation, existing work only leverages the temporal information of two consecutive LBSN check-ins. Specifically, these methods only focus on adjacent visit sequences but ignore non-contiguous visits, while these visits can be important in understanding the spatio-temporal correlation within the trajectory. In order to fully mine this non-contiguous visit information, we propose a multi-layer Spatio-Temporal deep learning attention model for POI recommendation, Spatio-Temporal Transformer Recommender (STTF-Recommender). To incorporate the spatio-temporal patterns, we encode the information in the user’s trajectory as latent representations into their embeddings before feeding them. To mine the spatio-temporal relationship between any two visited locations, we utilize the Transformer aggregation layer. To match the most plausible candidates from all locations, we develop on an attention matcher based on the attention mechanism. The STTF-Recommender was evaluated with two real-world datasets, and the findings showed that STTF improves at least 13.75% in the mean value of the Recall index at different scales compared with the state-of-the-art models.

Details

Title
Spatio-Temporal Transformer Recommender: Next Location Recommendation with Attention Mechanism by Mining the Spatio-Temporal Relationship between Visited Locations
Author
Xu, Shuqiang 1 ; Huang, Qunying 2   VIAFID ORCID Logo  ; Zou, Zhiqiang 3   VIAFID ORCID Logo 

 College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 
 Spatial Computing and Data Mining Lab, Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA 
 College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; Jiangsu Key Laboratory of Big Data Security and Intelligent Processing, Nanjing 210023, China 
First page
79
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779548428
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.