Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Product design is a process of repeated iteration and gradual improvement, and knowledge push is one of the bottlenecks that needs to be solved to improve the product design level. With the increase in design complexity and iteration rounds, the existing knowledge application methods can hardly meet the needs of product design solution iteration and evolution. In order to better assist designers in acquiring and applying knowledge in the process of product design solution evolution, a knowledge service method for product design solution evolution based on the problem–strategy–solution (PSS) interaction iteration is proposed. The mapping and feedback process between design problems, design strategies, and design solutions are analyzed, a model of the solution evolution process based on design iteration is proposed, and a PSS-based product design solution evolution mechanism is established. On this basis, the product design solution evolution knowledge service dimension is built, and the solution evolution knowledge service model based on design iteration is established. The corresponding solution evolution function module is developed based on the pre-developed computer-aided product innovation design platform. The validity of the iterated-based design was proved in the technical innovation of nanofiber preparation and further application of strain sensors.

Details

Title
Solution Evolution Knowledge Service Based on Design Iteration in Strain Sensor Design
Author
Zhang, Kai 1 ; Wu, Zhao 1 ; Liu, Qingjie 2   VIAFID ORCID Logo  ; Guo, Xin 1   VIAFID ORCID Logo  ; Yu, Miao 1   VIAFID ORCID Logo 

 School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China 
 Department of Aircraft Manufacturing, Sichuan Aerospace Vocational College, Chengdu 610100, China 
First page
1931
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779548518
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.