Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The aim of this study was to develop and validate a semi-automated segmentation approach that identifies the round window niche (RWN) and round window membrane (RWM) for use in the development of patient individualized round window niche implants (RNI) to treat inner ear disorders. Twenty cone beam computed tomography (CBCT) datasets of unilateral temporal bones of patients were included in the study. Defined anatomical landmarks such as the RWM were used to develop a customized 3D Slicer™ plugin for semi-automated segmentation of the RWN. Two otolaryngologists (User 1 and User 2) segmented the datasets manually and semi-automatically using the developed software. Both methods were compared in-silico regarding the resulting RWM area and RWN volume. Finally, the developed software was validated ex-vivo in N = 3 body donor implantation tests with additively manufactured RNI. The independently segmented temporal bones of the different Users showed a strong consistency in the volume of the RWN and the area of the RWM. The volume of the semi-automated RWN segmentations were 48 ± 11% smaller on average than the manual segmentations and the area of the RWM of the semi-automated segmentations was 21 ± 17% smaller on average than the manual segmentation. All additively manufactured implants, based on the semi-automated segmentation method could be implanted successfully in a pressure-tight fit into the RWN. The implants based on the manual segmentations failed to fit into the RWN and this suggests that the larger manual segmentations were over-segmentations. This study presents a semi-automated approach for segmenting the RWN and RWM in temporal bone CBCT scans that is efficient, fast, accurate, and not dependent on trained users. In addition, the manual segmentation, often positioned as the gold-standard, actually failed to pass the implantation validation.

Details

Title
Development and In-Silico and Ex-Vivo Validation of a Software for a Semi-Automated Segmentation of the Round Window Niche to Design a Patient Specific Implant to Treat Inner Ear Disorders
Author
Matin-Mann, Farnaz 1   VIAFID ORCID Logo  ; Gao, Ziwen 2   VIAFID ORCID Logo  ; Wei, Chunjiang 3 ; Repp, Felix 4 ; Eralp-Niyazi Artukarslan 1 ; Samuel, John 5   VIAFID ORCID Logo  ; Dorian Alcacer Labrador 5 ; Lenarz, Thomas 3   VIAFID ORCID Logo  ; Scheper, Verena 3   VIAFID ORCID Logo 

 Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany 
 Cluster of Excellence “Hearing4all” EXC 1077/1, 30625 Hanover, Germany; Ear Nose and Throat Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China 
 Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany; Cluster of Excellence “Hearing4all” EXC 1077/1, 30625 Hanover, Germany 
 OtoJig GmbH, Karl-Wiechert-Allee 3, 30625 Hanover, Germany 
 HörSys GmbH, Karl-Wiechert-Allee 3, 30625 Hannover, Germany 
First page
51
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2313433X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779555858
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.