Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Many irrigation ponds in Fukushima Prefecture were decontaminated due to the contamination of radiocesium released from Fukushima Daiichi Nuclear Power Plant. To evaluate the impact of decontamination on 137Cs dynamics in an urban pond in Koriyama City, Fukushima Prefecture, Japan, temporal changes in 137Cs concentrations in bottom sediments and pond water were investigated before and after bottom-sediment removal. Post-decontamination, 137Cs inventories in bottom sediments decreased by 46–89%. 137Cs inventories in bottom sediments were relatively high in fine sediments before decontamination, and were also high at points near the water inlet after decontamination. Following decontamination, the mean 137Cs concentration in suspended solids (SS) and the mean dissolved 137Cs concentration in pond water decreased by 52% and 5%, respectively. Even after decontamination, the normalized 137Cs concentrations in SS and in water, which were calculated by dividing the 137Cs concentrations by the mean 137Cs inventories in each area, were higher than those in rivers, dam reservoirs, and ponds elsewhere in Fukushima. The positive correlations between δ15N values, an indicator of the source contribution to bottom sediments, and 137Cs concentrations in the upper 5 cm of bottom sediments after decontamination implied that SS from urban areas gradually increased the 137Cs inventories in the pond. The results underline the importance of secondary inputs of 137Cs from highly urbanized catchments.

Details

Title
Impact of Bottom-Sediment Removal on 137Cs Contamination in an Urban Pond
Author
Kurosawa, Honoka 1   VIAFID ORCID Logo  ; Wakiyama, Yoshifumi 2   VIAFID ORCID Logo  ; Wada, Toshihiro 2 ; Nanba, Kenji 3 

 Graduate School of Symbiotic Systems Science and Technology, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan 
 Institute of Environmental Radioactivity, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan 
 Institute of Environmental Radioactivity, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan; Faculty of Symbiotic Systems Science, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan 
First page
519
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779562039
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.