Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

At present, mixed infection with multiple pathogens is an important reason for the complexity of swine diseases in China. Among them, African swine fever virus (ASFV), porcine circovirus 2 (PCV2), and pseudorabies virus (PRV) are extremely important DNA viruses that cause reproductive abnormalities in sows. Therefore, there is an urgent need for rapid and sensitive detection methods that can diagnose three kinds of DNA viruses in the clinic. Herein, a multiplex real-time PCR (qPCR) assay based on TaqMan probes was developed for the simultaneous determination of ASFV, PCV2, and PRV. To ascertain the use of the multiplex real-time qPCR, 383 field specimens from the pig farms of four provinces in East China were collected. The survey data displayed that the ASFV, PCV2, and PRV single infection rates were 22.45%, 28.46%, and 2.87%, respectively. The mixed infection rates of ASFV + PCV2, ASFV + PRV, PCV2 + PRV, and ASFV + PCV2 + PRV were 5.22%, 0.26%, 1.83%, and 0.26%, respectively. The assay established in this study could be used as a differential diagnostic tool for the monitoring and control of ASFV, PCV2, and PRV in the field.

Abstract

African swine fever virus (ASFV), porcine circovirus 2 (PCV2), and pseudorabies virus (PRV) are important DNA viruses that cause reproductive disorders in sows, which result in huge losses in pig husbandry, especially in China. The multiplex qPCR assay could be utilized as a simultaneous diagnostic tool for field-based surveillance and the control of ASFV, PCV2, and PRV. Based on the conserved regions on the p72 gene of ASFV, the Cap gene of PCV2, the gE gene of PRV, and the porcine endogenous β-Actin gene, the appropriate primers and probes for a multiplex TaqMan real-time PCR test effective at concurrently detecting three DNA viruses were developed. The approach demonstrated high specificity and no cross-reactivity with major pathogens related to swine reproductive diseases. In addition, its sensitivity was great, with a detection limit of 101 copies/L of each pathogen, and its repeatability was excellent, with intra- and inter-group variability coefficients of <2%. Applying this assay to detect 383 field specimens collected from 2020 to 2022, the survey data displayed that the ASFV, PCV2, and PRV single infection rates were 22.45%, 28.46%, and 2.87%, respectively. The mixed infection rates of ASFV + PCV2, ASFV + PRV, PCV2 + PRV, and ASFV + PCV2 + PRV were 5.22%, 0.26%, 1.83%, and 0.26%, respectively. Overall, the assay established in this study provides an effective tool for quickly distinguishing the viruses causing sow reproductive disorders, suggesting its huge clinical application value in the diagnosis of swine diseases.

Details

Title
Development of a TaqMan-Probe-Based Multiplex Real-Time PCR for the Simultaneous Detection of African Swine Fever Virus, Porcine Circovirus 2, and Pseudorabies Virus in East China from 2020 to 2022
Author
Liu, Huaicheng 1 ; Zou, Jianwen 1 ; Liu, Rongchao 1 ; Chen, Jing 1 ; Li, Xiaohan 1 ; Zheng, Haixue 2 ; Long, Li 3   VIAFID ORCID Logo  ; Zhou, Bin 1   VIAFID ORCID Logo 

 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China 
 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China 
 College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China 
First page
106
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23067381
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779630233
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.