Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study presents a comprehensive comparison of Level 2.0 cloud properties between a Second-generation Global Imager (SGLI) aboard the GCOM-C satellite and a Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, to better understand the qualities of cloud properties obtained from SGLI/GCOM-C launched on 23 December 2017. The cloud pixels identified as water phase by both satellite sensors are highly consistent to each other by more than 90%, although the consistency is only ~60% for ice phase cloud pixels. A comparison of cloud properties—cloud optical thickness (COT) and cloud particle effective radius (CER)—between these two satellite sensors reveals that water and ice cloud properties can have different degrees of agreement depending on underlying surface. The relative difference (RD) values of 22% (18%) and 37% (24%) for water cloud COT (CER) comparison over ocean and land surfaces and respective values of 35% (42%) and 35% (62%) for comparisons of ice cloud properties, and also other comparison metrics, suggest better agreements for water cloud properties than for ice cloud properties, and for ocean surface than for land surface. Though cloud properties differences between MODIS and SGLI can arise from inherent features of cloud retrieval algorithms, such as differences in ancillary data, surface reflectance, cloud droplet size distribution function, model for ice particle habit, etc., this study further identifies the important roles of cloud thickness and Sun and satellite positions for differences in cloud properties between SGLI and MODIS: the differences in cloud properties are found to increase for thinner clouds, higher solar zenith angle, and higher differences in viewing zenith and azimuth angles between these satellite sensors, and such differences are more distinct for water cloud properties than for ice cloud properties.

Details

Title
Comparison of Cloud Properties between SGLI Aboard GCOM-C Satellite and MODIS Aboard Terra Satellite
Author
Khatri, Pradeep; Hayasaka, Tadahiro
First page
1075
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779657942
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.