Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Singapore is one of the most populous countries, and the majority of the population stays in high-rise public flats. In 2021, there were about 1.1 million public residential units, of which 79% were above 20 years old. The number of incidents of falling objects from a height has been increasing due to the aging and deterioration of buildings. The Periodic Façade Inspection (PFI) regime was enacted in 2020 to mandate façade inspections for all buildings above 13 m and exceeding 20 years old. However, the relatively new PFI regime has not considered the potential impacts of climate change on building façades. In this paper, the common root causes of façade defects that can be impacted by climate change are first identified. Based on the climate projection in Singapore to 2100, Singapore is expected to experience a higher mean temperature, a higher rainfall intensity, more extreme rainfall events, and a higher wind gust speed. Overall, these changes in the climate pattern will accelerate corrosion or degradation, material fatigue, adhesion failure, biological attack, and humidity or dampness. The impacts of climate change on vertical greeneries are also discussed. This paper provides a first insight into the key concerns to focus on for the future revision and improvement of the PFI regime to incorporate climate change impacts on façades.

Details

Title
Climate Change Projection and Its Impacts on Building Façades in Singapore
Author
Chew, Lup Wai 1   VIAFID ORCID Logo  ; Xian-Xiang, Li 2   VIAFID ORCID Logo  ; Chew, Michael Y L 1   VIAFID ORCID Logo 

 College of Design and Engineering, National University of Singapore, Singapore 117559, Singapore 
 School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510060, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China 
First page
3156
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779661735
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.