Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to save frequency resources, a new remote sensing satellite service can gradually adopt relay cooperation transmission to realize the same frequency and common channel transmission of multiple data. To solve the problem of mutual interference between messages, this study proposes a universal model of relay cooperative channel transmission, and the separation mechanism of heterogeneous signals for simultaneous unicast and multicast transmission is also studied. In this study, a signal space is used to reconstruct the degrees of freedom, and an orthogonalized spatial alignment direction is designed to obtain the equivalent parallel transmission channel. We also propose a constellation point remapping scheme under the optimal constraint of spatial separation of transmission signals. Furthermore, we merge constellation points to solve the problem of fuzzy mapping of physical layer network coding. The simulation results show that the co-channel transmission with interference suppression can be realized when the equivalent degrees of freedom of the signal intersection subspace is not less than dpK(K1)+dcK. The Euclidean distance between constellation points is increased by constructing orthogonal signal spatial alignment directions, which brings an additional BER performance gain of 2 dB. If the signal alignment direction and channel quality are jointly designed, the transmission quality can be further improved.

Details

Title
Satellite Network Transmission of Cooperative Relay Superimposed Signal Reconstructed in Spatial Dimension
Author
Wang, Yong 1 ; Wang, Xiyuan 2 

 The School of Cyber Engineering, Xidian University, Xi’an 710071, China 
 Information Science Research Center, Xidian University, Xi’an 710071, China 
First page
919
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779686963
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.