Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the help of various polar-orbiting environment observing platforms, the atmospheric concentration of carbon dioxide (CO2) has been well established on a global scale. However, the spatial and temporal pattern of the CO2 emission and its flux dependence on daily human activity processes are not yet well understood. One of the limiting factors could be attributed to the low revisit time frequency of the polar orbiting satellites. With high revisiting frequency and CO2-sensitive spectrum, the Geostationary Interferometric Infrared Sounder (GIIRS) onboard the Chinese FY-4A and FY-4B satellites have the potential to measure the CO2 concentration at a higher temporal frequency than polar-orbiting satellites. To provide a prototypical demonstration on the CO2 monitoring capability using GIIRS observations, a hybrid-3D variational data assimilation system is established in this research and a one-month-long experiment is conducted. The evaluations against the Goddard Earth Observing System version 5 (GEOS-5) analysis field and Orbiting Carbon Observatory -2/-3 (OCO-2/-3) CO2 retrieval products reveal that assimilating GIIRS observations can reduce the first guess’s CO2 concentration mean bias and standard deviation, especially over the lower troposphere (975–750 hPa) and improve the diurnal variation of near surface CO2 concentration.

Details

Title
The Potential of Monitoring Carbon Dioxide Emission in a Geostationary View with the GIIRS Meteorological Hyperspectral Infrared Sounder
Author
Zhang, Qi 1   VIAFID ORCID Logo  ; SmithSr, William 1 ; Shao, Min 2   VIAFID ORCID Logo 

 Space Science and Engineering Center, University of Wisconsin-Madison, 1225 W. Dayton St., Madison, WI 53706, USA 
 School of Environment, Nanjing Normal University, Nanjing 210023, China 
First page
886
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779686992
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.