Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This work presents a physical, mechanical, durability, leaching, and radiological assay of three wastes (egg and scallop shells and olive pomace ash) as road-base binders. Two different waste/Portland-cement ratios (7.5/92.5 and 80/20) were studied. Density and compressive strength decreased when different wastes were added in every proportion. Additions of 7.5% of both shells reduce the density to about 2.5% and the compressive strength to 20%, while 80% reduces the density to 20% and the compressive strength to 90%, while the addition of biomass fly ash decreases the density and compressive strength in a higher proportion than shells. The durability against acid attack is increased when the three wastes are used, and this increase is higher when the waste dosage is increased (up to 15 times more when 80% biomass ash is used). With respect to leaching, scallop and eggshells can be used as a component of hydraulic road binder, but olive pomace ash presents leaching values higher than the limits of different regulations (Se, Pb, Ni, Mo, Cu, and As). From a radiological perspective, all road-base binders present an activity concentration index lower than 1, except when olive pomace ash was used, and the binders showed higher values of 40K due to the high potassium content of fly ash.

Details

Title
Recycling Bio-Based Wastes into Road-Base Binder: Mechanical, Leaching, and Radiological Implications
Author
Peceño, B 1   VIAFID ORCID Logo  ; Hurtado-Bermudez, S 2   VIAFID ORCID Logo  ; Alonso-Fariñas, B 3   VIAFID ORCID Logo  ; Villa-Alfageme, M 2   VIAFID ORCID Logo  ; Más, J L 4 ; Leiva, C 3   VIAFID ORCID Logo 

 Escuela de Prevención de Riesgos y Medioambiente, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile 
 Dpto. Física Aplicada II, ETSA, Universidad de Sevilla, Avda. Reina Mercedes 2, 41012 Seville, Spain 
 Dpto. Ingeniería Química y Ambiental, ETS-Ingeniería, University of Seville, Camino de los Descubrimientos s/n, Pabellón Plaza de América, 41092 Seville, Spain 
 Dpto. Física Aplicada I, ETSI-Informática, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Seville, Spain 
First page
1644
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779899764
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.