Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wind power generation is one of the important development projects for renewable energy worldwide. As wind turbines operate in harsh environments, failure of the wind turbines often occurs, thus leading to lower power generation efficiency and high maintenance cost. Earlier detection of the fault type can reduce the maintenance cost. This study proposed a hybrid recognition algorithm based on the symmetrized dot pattern (SDP) and convolutional neural network (CNN) for wind turbine gearbox fault diagnoses. In addition to a fault-free type, four fault types were discussed in this paper, including gear rustiness, broken tooth, wear, and aging. A vibration sensor was used for measurement. The original vibration signals of the gearbox were captured by a NI-9234 high-speed data acquisition card, filtered by a fast Fourier transform, and imported into the SDP to create the snowflake image features. Afterward, CNN diagnosed the gearbox fault type. There were 1500 test data in this study. A total of 200 data items for each fault type were used as training samples, and 100 data of each type were used as test samples. The test result shows that the training accuracy was 98.8%. The proposed method can diagnose the fault condition of the gearbox effectively and identify the fault type of the gearbox accurately. This is favorable for the quick maintenance of wind turbines.

Details

Title
Research on Fault Diagnosis of Wind Turbine Gearbox with Snowflake Graph and Deep Learning Algorithm
Author
Meng-Hui, Wang  VIAFID ORCID Logo  ; Fu-Hao, Chen; Shiue-Der Lu  VIAFID ORCID Logo 
First page
1416
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779900469
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.