It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Membranes with fast and selective ion transport are essential for separations and electrochemical energy conversion and storage devices. Metal-coordinated polymers are promising for fabricating ion-conducting membranes with molecular channels, however, the structures and ion transport channels remain poorly understood. Here, we reported mechanistic insights into the structures of metal-ion coordinated polybenzimidazole membranes and the preferential K+ transport. Molecular dynamics simulations suggested that coordination between metal ions and polybenzimidazole expanded the free volume, forming subnanometre molecular channels. The combined physical confinement in nanosized channels and electrostatic interactions of membranes resulted in a high K+ transference number up to 0.9 even in concentrated salt and alkaline solutions. The zinc-coordinated polybenzimidazole membrane enabled fast transport of charge carriers as well as suppressed water migration in an alkaline zinc-iron flow battery, enabling the battery to operate stably for over 340 hours. This study provided an alternative strategy to regulate the ion transport properties of polymer membranes by tuning polymer chain architectures via metal ion coordination.
Membranes with fast and selective ion transport are essential for electrochemical processes. Here the authors provide mechanistic insights into the structures of metal-ion coordinated polybenzimidazole membranes and the preferential K+ transport, and their application in an alkaline zinc-iron flow battery.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Chinese Academy of Sciences, Division of Energy Storage, Dalian Institute of Chemical Physics, Dalian, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
2 Chinese Academy of Sciences, Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, China (GRID:grid.9227.e) (ISNI:0000000119573309)
3 Chinese Academy of Sciences, Division of Energy Storage, Dalian Institute of Chemical Physics, Dalian, China (GRID:grid.9227.e) (ISNI:0000000119573309)
4 Chinese Academy of Sciences, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Shanghai, China (GRID:grid.9227.e) (ISNI:0000000119573309)