It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Seeking singularity free solutions are important for further understanding black holes in quantum level. Recently, a five-dimensional singularity free black hole/topological star was constructed (Bah and Heidmann in Phys Rev Lett 126:151101, 2021). Through the Kaluza–Klein reduction, an effective four-dimensional static spherically symmetric charged black hole with scalar hair can be obtained. In this paper, we study shadow of this charged black hole with scalar hair in terms of four kinds of observers, i.e., static observers, surrounding observers, freely falling observers, and escaping observers in four-dimensional spacetime. For a spherically symmetric black hole, the shadow is circular for any observer, but the shadow size depends on the motion status of the observer. On the other hand, the effect of plasma is also investigated by a simple model. The radius of the photon sphere depends on the plasma model. Most importantly, we find that the shadow sizes do not monotonically decrease with r in some cases.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Lanzhou University, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, School of Physical Science and Technology, Lanzhou, People’s Republic of China (GRID:grid.32566.34) (ISNI:0000 0000 8571 0482); Lanzhou University, Institute of Theoretical Physics and Research Center of Gravitation, Lanzhou, People’s Republic of China (GRID:grid.32566.34) (ISNI:0000 0000 8571 0482)