It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Plasmonic and phase transition has been blended to gain the infrared radiative switching which is tunable with temperature or voltage supply. This is applied via vanadium dioxide, tungsten trioxide, and molybdenum trioxide as transition metal oxides (TMO). The metallic phase at high temperature or colored state contributes in magnetic polariton (MP) excitation, producing broad absorptance. The TMO-based sub-layer is integrated underneath the grating fully supporting MP resonance. In contrast, this underlayer leads to producing the narrowband absorptance originated from concept of zero contrast grating (ZCG). The zero gradient in refractive index at the output plane of the grating cause transmission of light in broad wavelength range. With introduction of reflective silver underlayer, those transmitted through the grating are reflected back. However, there exists the near-zero narrowband transmission peaks in ZCG. This undergoes transformation to narrowband absorptance. In addition, another absorptance peak can be induced due to phonon modes at insulating phase. The MP resonance at metallic phase is characterized with inductor-capacitor (LC) circuit and the narrowband absorptance peaks are characterized with phase shift from the Fabry–Perot round trip (FP-RT) eigenequation from high contrast grating (HCG). The work expands the usage of transition metal oxides in infrared region with larger contrast.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of North Texas, Department of Mechanical Engineering, Denton, USA (GRID:grid.266869.5) (ISNI:0000 0001 1008 957X); Arizona State University, School for Engineering of Matter, Transport & Energy, Tempe, USA (GRID:grid.215654.1) (ISNI:0000 0001 2151 2636)
2 University of North Texas, Department of Mechanical Engineering, Denton, USA (GRID:grid.266869.5) (ISNI:0000 0001 1008 957X)