Full text

Turn on search term navigation

© 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Early blight, caused by the necrotrophic fungus Alternaria solani, is an important foliar disease that causes major yield losses of potato. Effector proteins secreted by pathogens to host cells can inhibit host immune response to pathogens. Currently, the function of effector proteins secreted by A. solani during infection is poorly understood. In this study, we identified and characterized a novel candidate effector protein, AsCEP50. AsCEP50 is a secreted protein that is highly expressed throughout the infection stages of A. solani. Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana and tomato demonstrated that AsCEP50 is located on the plasma membrane of N. benthamiana and regulates senescence-related genes, resulting in the chlorosis of N. benthamiana and tomato leaves. Δ50 mutants were unaffected in vegetative growth, spore formation and mycelium morphology. However, the deletion of AsCEP50 significantly reduced virulence, melanin production and penetration of A. solani. These results strongly supported that AsCEP50 is an important pathogenic factor at the infection stage and contributes to the virulence of Alternaria solani.

Details

Title
Identification and functional analysis of protein secreted by Alternaria solani
Author
Wang, Chen  VIAFID ORCID Logo  ; Wang, Jinhui; Zhang, Dai; Cheng, Jianing; Zhu, Jiehua; Yang, Zhihui
First page
e0281530
Section
Research Article
Publication year
2023
Publication date
Mar 2023
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2783725661
Copyright
© 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.