It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Loop corrections to unequal-time correlation functions in Minkowski spacetime exhibit secular growth due to a breakdown of time-dependent perturbation theory. This is analogous to secular growth in equal-time correlators on time-dependent backgrounds, except that in Minkowski the divergences must not signal a real IR issue. In this paper, we calculate the late-time limit of the two-point correlator for different massless self-interacting scalar quantum field theories on a Minkowski background. We first use a late-time version of the in-in path integral starting in the vacuum of the free theory; in this limit, the calculation, including UV renormalization, reduces to that in in-out. We find linear or logarithmic growth in time, depending on whether the interaction strength is dimension-one or dimensionless, respectively. We next develop the Weisskopf-Wigner resummation method, that proceeds by demanding unitarity within a truncated Hilbert space, to calculate the resummed correlator and find that it gives an exact exponentiation of the late-time perturbative result. The resummed (unequal-time) correlator thus decays with an exponential or polynomial time-dependence, which is suggestive of ‘universal’ behavior that depends on the dimensions of the interaction strength.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Massachusetts, Department of Physics and Applied Physics, Lowell, USA (GRID:grid.225262.3) (ISNI:0000 0000 9620 1122)
2 The Pennsylvania State University, Institute for Gravitation and the Cosmos, University Park, USA (GRID:grid.29857.31) (ISNI:0000 0001 2097 4281)
3 Minerva University, San Francisco, USA (GRID:grid.29857.31)