It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper proposes a normal oriented impact stiffness of a three-supporting cable flexible barrier under a small pretension stress to estimate the structural load behaviour, and employs two categories of small-scale debris flows (coarse and fine) to explore the stiffness evolution through physical model experiments with high-speed photography and load sensing. Results suggest that the particle-structure contact is essential to the normal load effect. Coarse debris flow performs more frequent particle-structure contact and exerts evident momentum flux, while fine debris flows with few physical collisions impart much smaller one. The middle-sited cable that receives only tensile force from vertical equivalent cable-net joint system exhibits indirect load behaviour. The bottom-sited cable shows high load feedback due to the sum of direct contact of debris flow and tensile forces. The relationship between impact loads and maximum cable deflections can be explained by power functions according to quasi-static theory. The impact stiffness is not just affected by the particle-structure contact but by the flow inertia and particle collision effect. Savage number Nsav and Bagnold number Nbag manage to depict the dynamical effects on the normal stiffness Di. Experiments indicate that Nsav has positive linear correlation with the nondimensionalization of Di, whilst Nbag has positive power correlation with the nondimensionalization of Di. This idea is an alternative scope for the study on flow-structure interaction and may contribute to the parameter identification in numerical simulation of the debris flow-structure interaction and the optimization of the design standardization.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Sichuan Agricultural University, College of Water Conservancy and Hydropower Engineering, Ya’an City, China (GRID:grid.80510.3c) (ISNI:0000 0001 0185 3134)
2 Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu, China (GRID:grid.13291.38) (ISNI:0000 0001 0807 1581)