Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Loquats have gained increasing attention from consumers and growers for their essential nutrients and unusual phenology, which could help plug a gap period at market in early spring. Fruit acid is a critical contributor to fruit quality. The dynamic changes in organic acid (OA) during fruit development and ripening of common loquat (Dawuxing, DWX) and its interspecific hybrid (Chunhua, CH) were compared, as well as the corresponding enzyme activity and gene expression. At harvest, titratable acid was significantly lower (p ≤ 0.01) in CH (0.11%) than in DWX loquats (0.35%). As the predominant OA compound, malic acid accounted for 77.55% and 48.59% of the total acid of DWX and CH loquats at harvest, followed by succinic acid and tartaric acid, respectively. PEPC and NAD-MDH are key enzymes that participate in malic acid metabolism in loquat. The OA differences in DWX loquat and its interspecific hybrid could be attributed to the coordinated regulation of multiple genes and enzymes associated with OA biosynthesis, degradation, and transport. The data obtained in this work will serve as a fundamental and important basis for future loquat breeding programs and even for improvements in loquat cultural practices.

Details

Title
Organic Acid Accumulation and Associated Dynamic Changes in Enzyme Activity and Gene Expression during Fruit Development and Ripening of Common Loquat and Its Interspecific Hybrid
Author
Deng, Honghong; Li, Xuelian; Wang, Yang; Ma, Qiaoli; Zeng, Yuge; Yinchun Xiang; Chen, Mingmin; Zhang, Huifen; Xia, Hui; Liang, Dong  VIAFID ORCID Logo  ; Lv, Xiulan; Wang, Jin; Deng, Qunxian
First page
911
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785184839
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.